Aprendizaje

Errores más comunes en el modelamiento de puentes

Written by Alexander Hernández | Sep 12, 2024 3:00:00 PM

El desarrollo de la curva de aprendizaje al usar un programa requiere de numerosas pruebas de ensayo – error y es normal que se comparen los resultados de modelos básicos con otros de referencia (cálculos manuales, hojas de cálculo). Ahora bien, cuando esas diferencias numéricas aparecen, entre el software y lo esperado, es posible que el usuario haya cometido algún error u omitido algún paso en el proceso de creación del modelo; sí el usuario tiene experiencia en el uso del software estará en capacidad de identificar con relativa facilidad la fuente del error, de lo contrario se verá tentado a:

  1. Servicio de soporte técnico.
  2. Consultar en foros del software.
  3. Buscar videos en YouTube desarrollados por usuarios o por la empresa desarrolladora del software.

Y si ninguna de estas soluciones funciona, es posible que la frustración y desconcierto motiven al desuso o pérdida de interés en el software. De manera general, este proceso de solución de errores y dudas podría presentarse en cualquier software.

El equipo de soporte técnico de midas Civil, que brinda soporte y acompañamiento a usuarios a resolver problemas en términos de modelamiento y corrección de errores de funcionamiento del software, ha identificado los errores más recurrentes durante los procesos de modelamiento, análisis y diseño de puentes. Algunos de estos errores serán detallados en las siguientes líneas y están organizados en los siguientes ítems:

  1. Configuración general del modelo
  2. Nodos y elementos
  3. Condiciones de borde
  4. Generación de sección compuesta con elementos Plate
  5. Etapas constructivas

 

1. Configuración general del modelo

 

Podría pensarse que la masa del puente es definida automáticamente al configurar un caso de carga de peso propio o que todas cargas muertas serán incluidas a la matriz de masa para análisis dinámicos (valores propios, espectro de respuesta) pero esto no es del todo correcto, ya que se requieren pasos previos para la correcta configuración de la masa del puente. En primer lugar, la masa por peso propio debe ser configurada y las masas adicionales añadidas, esto se realiza en las siguientes ventanas:

Structure – Structure Type – Convert Self-Weight into Masses (Figura 1)

Figura 1. Conversión de peso propio a masa

 

En el caso de las cargas adicionales, estás son añadidas en la siguiente ventana:

Load – Structure Loads/ Masses – Load to Masses (Figura 2)

Donde se seleccionan los correspondientes casos de carga muerta permanente de la estructura (pavimento, barreras vehiculares, barandas).

 

Figura 2. Adición de cargas muertas a matriz de masa

 

2. Nodos y elementos:

Un error común durante el proceso de modelamiento es considerar, por perspectiva visual, que todos los nodos y elementos están correctamente conectados entre sí, pero esto no siempre sucede. Contextualizando este enunciado, para el puente mostrado (Figura 3) podría pensarse que los nodos de apoyo conectados mediante Rigid Link al tablero (recuadro en verde) están correctamente conectados. En la Figura 4, para el elemento resaltado en rojo, es de esperarse que sean 3 elementos constituyentes, pero tan solo hay un elemento seleccionado, esto da una clara señal de que la conexión elemento – nodo es inexistente, al ampliar el detalle de conexión ya es evidente que no hay conexión nodo – elemento. Esto puede corregirse al dibujar un elemento de nodo a nodo (según lo requiera el proyecto). Cuando el trazado base del puente es importado desde un archivo .dxf es posible que el dibujo de los ejes de las vigas no se haya realizado, correctamente por lo que es necesario revisar que las líneas se intersequen entre ellas.

Figura 3. Detalle de conexión de nodos de apoyo al tablero del puente

Figura 4. Elemento demarcado por nodos intermedios

2.1. Alienación de los ejes locales:

Quizá la orientación de los ejes locales, así como el sentido de dibujo de los elementos, sea omitido dentro del proceso de revisión, pero tiene ciertas implicaciones en la presentación de los resultados, esto puede presentarse en elementos Beam como Plate. Por citar algunas situaciones, se presenta el siguiente diagrama de cortante por carga de peso propio (Figura 5). Por concepción teórica de fenómeno, para una viga simplemente apoyada, el diagrama de cortante debería tener una componente positiva y negativa de cortante en los extremos. En la Figura 5, dicha componente positiva en el extremo no es mostrada.

Figura 5. Diagrama de cortante por peso propio 

Al revisar la orientación de los ejes locales se identifica que parte de los elementos constituyentes del vano tienen orientación opuesta del eje local.

Figura 6. Orientación de ejes locales

Al reorientar el sentido de los ejes locales, la orientación del diagrama de cortante se muestra según la teoría del fenómeno. El ajuste de la orientación de los ejes locales puede hacerse siguiendo la ruta:

Node / Element – Change Parameters – Align Element Local

Figura 7. Ajuste de diagrama de cortante, luego orientación de ejes locales de elemento Beam

En el caso de elementos Plate, al generar estos elementos usando la función Auto-mesh Planar Area, Civil por defecto genera los Plate con orden aleatorio del eje local y podría creerse que no tendrá incidencia alguna, pero la interpretación de los resultados se vería afectado en gran medida, ya que la orientación de momentos y fuerzas cortantes estarían en ejes aleatorios.

En la Figura 8, la imagen de la zapata de la izquierda tiene orientación de ejes locales aleatoria y en la derecha la orientación de los ejes locales está alineada para todos los elementos. La distribución de momentos en el elemento Plate es diferente para las distintas orientaciones de los ejes locales. En la etapa de diseño, sin la correcta orientación de los ejes locales, es posible que se distribuya acero de refuerzo de manera errónea.

Figura 8. Momentos Mxx según promedio nodal para caso de carga de peso propio

 

Para orientar en una única dirección los ejes locales de la zapata (Plate) se puede seguir la siguiente ruta:

Node / Element – Change Parameters – Element Local Axis – Planar.

Aunque hay múltiples formas de ajustar la orientación de los ejes locales, queda a libre disposición del usuario la selección de la más adecuada. Para este caso, orientarlo respecto un vector de referencia es práctico, también podría alinearlo según un elemento de referencia (Align Element Local).

 Figura 9.  Procedimiento para orientación de ejes locales de elementos Plate

 

3. Condiciones de borde:


Generar una correcta condición de borde que represente con fidelidad el sistema de conexión en la realidad no siempre es fácil y tiene ciertas implicaciones asociadas dependiendo del enfoque de condiciones de borde usado. Para ejemplificar esto, se presentan dos casos de estudio: el primero para un puente viga cajón simplemente apoyado y el segundo para un muro de contención.

Para la viga cajón se analizaron 3 situaciones de condición de borde: apoyos fijos, elastic link de tipo rígido y elastic link para apoyo de neopreno.

Para los apoyos fijos, se ha restringido el desplazamiento transversal y vertical en los nodos externos y longitudinal en el nodo de la izquierda de la Figura 10, así como la rotación de la viga, donde el diagrama de momentos para peso propio se muestra a continuación. Al adicionar restricción a desplazamiento longitudinal en ambos nodos de los extremos, la configuración del diagrama de momento se modifica (Figura 11) dando la aparición a momentos negativos en los extremos.

 

Figura 10.  Diagrama de momentos para apoyos fijo en viga

Figura 11.  Diagrama de momentos para apoyos fijo simétricos en viga

 

La segunda condición de borde busca representar con mayor precisión el punto de conexión del neopreno al estribo o columna intermedia utilizando un apoyo fijo. La rigidez elástica del neopreno se representa mediante un elemento tipo Elastic Link, y la conexión entre el neopreno y la viga a través de un Rigid Link. Para este sistema de conexión, en ambos apoyos de neopreno se restringe el desplazamiento en dirección longitudinal del tablero y, así como en la situación anterior, se tendrá la aparición de momentos negativos en los extremos de la viga.

Figura 12.  Diagrama de momentos para restricción al desplazamiento longitudinal en ambos extremos de la viga

Estos dos ejemplos han puesto en evidencia que una asignación desacertada de la condición de borde genera un comportamiento diferente al esperado según preconcepción teórica.

Para la situación final, al asignar al elastic link las propiedades numéricas de rigidez del neopreno (calculadas para las dimensiones, número de capas, cantidad de láminas de acero) presentan un diagrama de momento con mayor participación de momento positivo y momentos negativos reducidos en los extremos. Estos pequeños momentos negativos son producidos por la excentricidad entre el centroide de la viga y el punto de apoyo (neoprenos) (Figura 13).

 

Figura 13. Diagrama de momentos para elastic link con propiedades numéricas del neopreno

Para el caso de estudio 2, relacionado con muros de contención que tienen una gran superficie apoyada en el terreno de fundación, desde la parte teórica del suelo, este no soporta cargas de tensión, por lo que resortes que soporten solo compresión deberían ser usados en el modelamiento. Para el diagrama de cuerpo libre (DCL) del muro mostrado en la Figura 14, se muestran las reacciones (verde) y cargas aplicadas a la estructura (rojo). Las reacciones verticales solo soportan compresión. Si únicamente se aplica una carga de empuje horizontal, la estabilidad del modelo numérico sería incompleta, ya que la fuerza aplicada a determinada altura del muro generaría un momento que tendería a levantar el costado derecho de este y dado que el resorte solo soporta fuerzas de compresión ante el levantamiento (tensión) no generaría resistencia alguna por lo que paulatinamente, a medida que se levante el muro, no se cumple estabilidad numérica. Esto se ve representado en el modelo con la no convergencia de los casos de carga.

Figura 14. DCL de muro de reacción

Si en cambio, al DCL se adiciona el peso propio de la estructura (Azul - Figura 15), la estabilidad numérica se logra, ya que el momento de levantamiento es contrarrestado por el peso del muro. Esto se ve representado con la ejecución exitosa del modelo. De esta situación de análisis es posible extraer que la correcta combinación de casos de carga en función de la condición de apoyo conlleva la correcta ejecución del modelo. En resumen, generar casos de carga que incluyen el peso propio junto con cargas horizontales mejora la convergencia del análisis numérico.

Figura 15. DCL de muro de reacción con peso del muro añadido en el análisis

Con respecto a las condiciones de contorno, la correcta asignación de restricciones conlleva la consecución de resultados numéricos según lo esperado teóricamente, así como la ejecución exitosa del modelo.

4. Generación de sección compuesta con elementos Plate:


Para puentes de sección compuesta en los que la losa o tablero es fundida en una etapa diferente a la de la viga principal como sucede en puentes en concreto de viga I, viga cajón o viga metálica con losa en concreto, se pueden emplear dos enfoques de modelamiento para generar dicho elemento. En primera instancia, se puede generar una sección compuesta de manera directa mediante elemento BEAM o usando elementos tipo plate como se muestra en la Figura 16. La viga en concreto de sección I es modelada usando ambos enfoques. Para la viga azul se modela la losa como elemento Plate y para la viga verde se modela la sección como elemento Composite Beam.

Properties – Section – Section for Resultant Forces

Figura 16. Tipos de viga de sección compuesta usando elementos Plate y Beam 

Al ejecutar el análisis para peso propio, sería de esperarse que los diagramas de momentos en ambas vigas sean iguales, pero al contrastar con lo reportado en la Figura 17, no hay coincidencia numérica. Esta diferencia de resultados es generada porque la combinación del elemento PLATE y BEAM no se comporta como sección compuesta.

Figura 17. Diagrama de momentos para peso propio

Para generar el comportamiento combinado de ambos elementos es necesario usar la función Section For Resultant Forces. Con esta función es necesario definir la cantidad de puntos de integración de resultados (según la cantidad de elementos de la viga) (Figura 18).

Figura 18. Configuración de función Section For Resultant Forces

Al obtener los resultados con la opción “Resultant Force Diagram” y “Beam Diagram”, respectivamente mostrados en la Figura 19, los valores numéricos son muy cercanos entre sÍ con diferencias de 0.5%.

Figura 19. Resultado de momentos para ambos enfoques de modelamiento de viga losa

En caso de realizar el diseño de la viga en concreto o metálica de sección compuesta, es necesario considerar que la función de diseño de viga compuesta requiere que la sección se haya definido de tipo PSC o Composite (Figura 20). En caso tal del de modelar la losa usando elementos Plate, el diseño de la sección compuesta deberá realizar de forma manual por el usuario (hojas de Excel, verificaciones de cálculos manuales).

Figura 20. Secciones de vigas usadas para el diseño de sección compuesta

 

5. Etapas constructivas: 

Hablar de etapas constructivas, en términos de modelamiento, puede ser un tema bastante extenso de tratar, pues para cada tipología de puente podrían darse múltiples pasos posibles a fin de encontrar la solución constructiva más adecuada para el puente, esto involucra analizar el proceso constructivo hacia adelante (procedimiento convencional para la gran mayoría de puentes) o hacia atrás en procesos de demolición o análisis de fuerzas iniciales en los tirantes para puentes atirantados. Aunque se pueden presentar múltiples soluciones para definir el proceso constructivo definitivo, cada una de las etapas requiere pasos en común como la asignación de grupos de elementos, condiciones de borde, cargas, edad de maduración de los elementos.

La definición de etapas constructivas en midas Civil funciona mediante la activación y desactivación de grupos, de esta forma se pueden controlar los parámetros que se desea que actúen en dicha etapa; no definir correctamente el correspondiente grupo al parámetro es de los errores más recurrentes al iniciar el modelamiento.

A continuación, describimos una forma de asignar el correspondiente grupo para elementos, condiciones de borde y cargas; los dos últimos pueden ser asignados mediante tablas.

Pasos iniciales

Definir cada uno de los grupos correspondientes, estos se definen en el Tree Menu en la sección Group, al dar clic derecho, se activa la opción de adicionar grupos, para luego definir el nombre de cada uno (Figura 21).

Figura 21. Modelo midas Civil sin grupos definidos

Figura 22. Creación de grupos

Para elementos: para la asignación de grupos a los elementos y nodos solo es necesario seleccionar los elementos y nodos para luego seleccionar el grupo de elementos correspondiente, arrastrar y soltar en la ventana de trabajo y quedarán asignados.

Para condiciones de borde: dos formas de trabajo pueden ser usadas para definir el grupo, el primer enfoque se aplica cuando se define el apoyo correspondiente, ya que cuando se define cada apoyo uno de los parámetros de entrada es “Boundary Group Name” tan solo queda seleccionar el grupo correspondiente y aplicar el ajuste (Figura 23). El siguiente enfoque es mediante tablas. Al ingresar a las tablas de las condiciones de borde, la casilla de la derecha permite definir el correspondiente grupo de borde (Figura 24).

Para cargas: como en el caso anterior, se disponen de dos alternativas para definir el grupo de carga, el primero mediante la asignación directa al definir la carga (Figura 25) o mediante la modificación del grupo en la sección de tablas (nodales, elementos Beam, elementos Plate, etc.) (Figura 26).

Figura 23. Asignación de grupos a condiciones de borde: asignación directa

Figura 24. Asignación de grupos a condiciones de borde: asignación mediante tablas

Figura 25. Asignación de grupos a cargas: asignación directa

Figura 26. Asignación de grupos a cargas: mediante tablas

Se ha mencionado cómo asignar el grupo, pero surge una gran pregunta: ¿cómo se puede revisar que el grupo de interés se ha activado en la etapa constructiva correspondiente? Para ello se tiene una forma sencilla y práctica de revisarlo: mediante inspección y verificación visual del tipo y cantidad de parámetros (elementos, cargas, condiciones de borde) activos en el Tree Menu. Para ejemplificar el anterior texto, les presentamos la siguiente situación:

La etapa constructiva inicial para un puente segmental es la construcción y/o activación de las columnas, esto conlleva empotramiento en la base de las columnas, al menos la carga del peso propio activada y los correspondientes elementos, si al revisar el Tree Menu no se identifica alguno de estos parámetros activados, implicaría que la etapa constructiva está incorrectamente definida (se seleccionó el grupo erróneo o sencillamente no se seleccionó) o no se asignó correctamente el grupo al parámetro de interés. Por ejemplo, en la Figura 27 se muestra la etapa inicial de construcción y al revisar con detalle las cargas y condiciones de borde definidas, no están activos los apoyos de tipo empotramiento ni la carga del peso propio. Esta situación puede ser corregida al revisar el grupo de carga y de borde correspondientemente asignado, así como la activación del grupo en la configuración de la etapa constructiva.

Figura 27. Verificación de grupos de carga, elementos y condiciones de borde activados

Desde que la mezcla del concreto fresco es vertida en el molde de la viga o columna se presentan fenómenos dependientes del tiempo (creep / shrinkage) asociados al fraguado y endurecimiento del concreto (consulte más información al respecto en el artículo Importancia de considerar Creep y Shrinkage en el diseño de puentes en concreto, especialmente puentes segmentales de grandes luces, por tanto, con el paso de los días los valores de resistencia a la compresión y módulo de elasticidad serán modificados y es ahí donde entra en mención la edad activación o maduración de los elementos, ya que dependiendo del valor de edad definido para el grupo de elementos serán los valores de resistencia a compresión tomados para análisis y diseño, al definir dicho valor en cero se pueden generar inconsistencias numéricas en los resultados (Figura 28).

Figura 28. Edad de maduración de elementos para efectos reológicos